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LE'ITER TO THE EDITOR 

Dissipative perturbation theory for quantum fields 

Ian D Lawrie 
Department of Physics, University of Leeds, Leeds LS2 9JT, U K  

Received 20 June 1988 

Abstract. A perturbative method is proposed for studying the evolution in time of quantum 
field theories which are driven away from thermal equilibrium by the presence of explicitly 
time-dependent parameters in their Hamiltonians. For the case of a scalar field with 
time-dependent mass, it is shown within the closed-time-path formalism that absorptive 
parts of higher-order contributions to propagators can be approximately resummed by the 
addition and subtraction of a local but non-diagonal quadratic counterterm. In this way, 
lowest-order propagators are obtained which mimic the dissipative behaviour of the 
complete propagators and thereby facilitate the incorporation of finite relaxation times in 
low-order calculations. Under highly favourable conditions, a Boltzmann equation can be 
approximately derived. 

Several years ago, Semenoff and Weiss (1985a, b) used a path integral method to derive 
Feynman rules for the perturbative evaluation of Green functions in non-equilibrium 
scalar field theories. Their analysis uses the closed-time-path formalism which derives 
ultimately from the work of Schwinger (1961) and Keldysh (1965). Given a state of 
thermal equilibrium at an  initial time to,  it allows for explicit time dependence of one 
or more parameters in the theory, which in general will drive the system away from 
equilibrium at later times. In principle, therefore, it should be possible to follow the 
evolution in time of the non-equilibrium density matrix, or at any rate of its moments 
which are the Green functions. The physical problem which motivated the work of 
Semenoff and  Weiss, as well as that reported here, is the dynamics of phase transitions 
in the early universe, for which the basic machinery is that of relativistic quantum field 
theory. Clearly, however, analogous situations abound in condensed matter physics, 
and the modified formalism constructed here should be readily adaptable to non- 
relativistic statistical mechanics. 

While the Feynman rules derived by Semenoff and Weiss are formally correct, they 
are virtually useless in practice, because they d o  not incorporate the effects of dissipation 
and  relaxation. The reason for this is clear. Perturbation theory formulated in the 
normal way is an  expansion about a non-interacting theory. Only when interactions 
occur, however, can the occupation numbers of single-particle or quasiparticle modes 
evolve with time in the expected manner. I n  the interacting theory, one may expect 
dissipation to emerge from absorptive parts of the full Green functions, but these can 
be adequately represented in perturbation theory only by resumming an infinite series 
of diagrams. For a time-independent equilibrium state, for example, one expects energy 
denominators of the form ( w  f wh f i yk), where the decay width yI. for quasiparticle 
excitations of momentum k is typically of the order of the square of a coupling constant. 
In order to isolate an  expression of this kind, one must identify an  appropriate geometric 
series within the perturbative expansion. In  a non-equilibrium theory with explicit 
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time dependence, one can contemplate calculating only a very few low-order terms 
and, moreover, no energy (or frequency) representation is possible. I t  is obviously 
essential to cast perturbation theory in a form in which the unperturbed propagators 
mimic as closely as possible the incalculable full  propagators. What we propose here 
amounts to a renormalisation scheme wherein the desired resummation is effected by 
adding an appropriate local counterterm to the free-field part of the Lagrangian and 
subtracting it from the interaction part. Adjustable functions in the counterterm can 
be chosen self-consistently so as to minimise the net effect of the modified interaction. 

To be specific, we consider a self-interacting Hermitian scalar field, with Lagrangian 
density 

~ ( 4 )  =&,4)2 -flV41z -fm’( t )42  - ( A / 4 ! ) 4 ~ ~  (1) 

the mass carrying an explicit time dependence which we take to be externally prescribed. 
For example, the Lagrangian density of a scalar field in a spatially flat Robertson-Walker 
universe may be expressed in this form, if t is identified as conformal time and the 
spatial coordinates are comoving. The generating functional for time-ordered Green 
functions is 

Z(j)=Tr[exp(  -PoH(to))Texp d3xj(x, r ) 4 ( x ,  t )  

where H (  to )  is the Hamiltonian obtained in the canonical manner from ( l ) ,  evaluated 
at the initial time t o ,  and Po is the inverse of the initial temperature. Its path integral 
representation involves three c-number fields, 4)(x, t ) ,  &(x, t ) ,  &(x, T), which live on 
three segments of a contour in the complex time plane: C, runs along the real axis 
from to to CO, Cz returns from CO to to and C3 descends from to to to - iPo. Imposition 
of causal boundary conditions is equivalent to giving the horizontal segments an 
infinitesimal downward slope. The action which appears in the functional integral is 
given by 

is=[ d’x(i ~ l ~ d r [ Y ( 0 , ) - % ( 4 z ) l - ~ ~ o d ~ ~ ( 4 , ) )  0 (3)  

with 

9 ( 4 >  =;(a,+)’ +t lV41z  +id( to)42 + ( A / 4 ! ) 4 ~ ~ .  

We restrict our attention to the real-time propagators Gah(xI,  t i ;  xz, t z )  = 
(&(xi ,  f l ) 4 b ( X Z ,  t 2 ) )  for which a and b are either 1 or 2, where (. . .) denotes the 
functional average weighted with exp(iS). In terms of the original quantum field, we 
may identify 

where T and are respectively, the time- and anti-time-ordering operators and ‘1’ 
and ‘2’ are an obvious shorthand for the spacetime arguments (see, e.g., Semenoff and 
Weiss (1985a) or Chou er a1 (1985)). From this identification, it is straightforward to 
show that the propagator matrix has the structure 

H ( r ,  t ’ )  H * ( c  1 ’ )  ) + e ( r , -  t )  ( W’, t )  H ( t ’ ,  f ) )  

( H (  t ,  1 ’ )  H * (  r, t ‘ )  H*(r’ ,  t )  H * ( t ’ ,  t )  
G (  t ;  t ’ )  = e(  t - 1 ’ )  

where H ( t ,  t ’ )  is an unknown complex function and spatial arguments have been 
suppressed. 
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We look for an unperturbed propagator matrix g( 1 ;  t ' )  which has the same structure 
as (5). Since we have taken a spatially homogeneous system, we may take a Fourier 
transform with respect to the spatial argument (x -x'). The transformed propagator 
should satisfy 

a k  ( f ,  d / a f ) g k  ( t ,  t ' )  = g k (  f ,  t ' ) a k  ( f ' ,  - ; / a t ' )  = -is( f - f ') ( 6 )  

where we take 9, to be of second order in the time derivative. We find that the most 
general operator consistent with the causal structure reflected in (5) is 

where a k ( t ) ,  P k ( t )  and Y k ( t )  are arbitrary real functions. In standard perturbation 
theory, the quadratic part of (1) leads to the identification P k ( t ) =  k 2 + m 2 ( r )  and 
f f k (  t )  = Y k (  t )  = 0. To incorporate dissipative effects into g k (  t, r ' ) ,  we allow more general 
functions by adding and subtracting an appropriate quadratic counterterm in (3) .  This 
counterterm is clearly not diagonal in the fields and d2 and thus has no simple 
interpretation in terms of the original quantum field and Lagrangian ( l ) ,  except that 
p k  ( t )  includes mass and wavefunction renormalisations. 

To carry out perturbative calculations, we must first solve ( 6 )  for g, in terms of 
a,, p k  and Y k ,  and then determine these functions self-consistently by imposing suitable 
generalised renormalisation conditions which match higher-order contributions to G 
which arise from the counterterm against those arising from interactions. That such 
matching can be carried out is guaranteed by the fact that we have chosen the operator 
(7) for consistency with (5). We solve ( 6 )  for a function h k ( t ,  t ' )  which will be the 
lowest-order approximation to Hk( t, t ' )  in the Fourier transform of ( 5 ) .  For orientation, 
consider first the case in which f f k ,  Pk and Y k  are constant, corresponding to a stationary 
state with constant m. The solution is 

where wk = ( P k  - yzk/4)1/2 and ( 2 n k  + 1) = a k / w k y k .  The interpretation of nk as the 
occupation number of quasiparticle modes and Yk as the decay width is clear. For 
the time-dependent case, we obtain a partial solution in terms of auxiliary functions 
n k ( t ) ,  Ck(r, t ' )  and N k ( f ,  t ' )  with C, real. Quite generally, we may write 

h k ( f ,  f ' )=exp(  -i j,: [ n k ( t " ) - $ Y k ( f " ) ]  dt" [ C k ( t ,  t ' ) + N k ( f ,  t ' ) ]  

The desired solution is then given by 

c k ( t ,  t ' )  = + [ n k ( f ) n k ( f ' ) ] - ' / *  

and 
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provided that a,(?)  and NA(f) satisfy 

and 

We stress that this is quite general: to the author, at  least, it came as a pleasant surprise 
that the solution can be thus decomposed into functions with a single time argument. 

t )  and 
y k (  r), together with suitable approximations for solving (12) and  (13). It also requires 
boundary conditions for these equations. In principle, boundary conditions arise from 
continuity of the full 3 x 3 matrix of propagators along the complex time contour and 
periodic boundary conditions at its endpoints (see Semenoff and  Weiss 1985a). 
However, the lowest-order terms of perturbation theory d o  not couple the real and  
imaginary time propagators. In practice, therefore, it is probably an  adequate approxi- 
mation to circumvent a complete analysis by supplying initial conditions from physical 
intuition, requiring, for example, that Nk ( t )  reproduce the Bose occupation numbers 
in an initial equilibrium state. 

As a qualitative illustration of the practical application of the formalism developed 
here, suppose that (i) all functions are slowly varying in time and  (ii) y A ( r ) ,  which is 
of order A’ in the theory defined by ( l ) ,  is sufficiently small for a quasiparticle mass 
shell to be approximately defined. Under these conditions, we have been able to show 
that Nk( t )  can be interpreted in terms of a time-dependent set of occupation numbers 
nA(t) and that (13) reduces to a Boltzmann equation. The scattering term in this 
equation arises from matching the counterterm containing a k  and yA to the diagram 
shown in figure 1. In principle, the expectation value of any operator can be calculated 
at any time by integrating this equation and  (12), by numerical methods if necessary. 
This is, of course, the simplest conceivable approximation. By making it, we allow 
our equations to degenerate into a form which might well have been guessed at by a 
variety of informal kinetic theory arguments. Nevertheless, we believe that the formal- 
ism presented here provides a systematic means of improving upon such elementary 
guesswork. Details of our investigation, together with illustrative numerical calcula- 
tions will be described in a forthcoming longer paper. 

Further progress requires a detailed prescription for obtaining ak( t ) ,  

Figure 1. Simplest contribution to propagators having an absorptive part 

Finally, it is appropriate to mention two other approaches to non-equilibrium field 
theory which are superficially similar to ours. Calzetta and Hu (1986) have applied 
the closed-time-path method to a field theory with constant parameters, but with a 
general Gaussian initial density matrix. They derive an approximate Boltzmann 
equation by truncating the infinite hierarchy of Dyson-Schwinger equations. We 
believe that the technique proposed here is both more systematic and  more versatile 
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than theirs, though at the level of approximation needed to derive the Boltzmann 
equations they become more or less equivalent. Umezawa and his collaborators have 
recently extended the formalism known as thermofield dynamics to encompass non- 
equilibrium states (see, e.g., Arimitsu et al(1988) and Umezawa and Yamanaka (1987)). 
This theory is based on an axiomatic extension of standard quantum field theory and 
shares with the closed-time-path formalism a doubling (though not a tripling) of field 
degrees of freedom to accommodate thermal states. For equilibrium states, it turns 
out to be equivalent to quantum statistical mechanics as exemplified by the trace 
formula (2).  We strongly suspect that this equivalence does not extend to non- 
equilibrium states, but cannot demonstrate this conclusively at present. At any rate, 
the propagators obtained by Umezawa and Yamanaka for relativistic scalar fields differ 
significantly from ours, though a direct comparison may not be appropriate. 

Initial stages of this work were undertaken during a period of study leave spent at the 
University of British Columbia. The author thanks the physics department of UBC 
for its hospitality and the Anglo-Canadian Scientific Exchange Scheme for financial 
assistance. It is a pleasure to acknowledge helpful discussions with T Arimitsu, E 
Calzetta, G Semenoff, H Umezawa, W Unruh and Y Yamanaka. 
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